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Abstract. The accommodation of misfit in epitaxial interfaces by homogeneous 
strain and by misfit dislocations ( M D )  is studied by means of the I D  model of Frank 
and van der Merwe in which the elastic interactions are replaced by a real pair-wise 
potential. A relevant feature of the real potential is its inflection point beyond which 
the potential is not convex. The latter leads to a significant difference in the physical 
behaviour in comparison with the system with a convex potential. An alternation 
of long, weak and short, strong bonds occurs in expanded epilayers. This transition 
from undistorted to distorted structures is found to be of second-order with respect 
to both the misfit and the substrate modulation and the critical exponents are equal 
to 1 / 2 .  The commensurate-incommensurate transition is continuous in compressed 
chains. In expanded chains it is also continuous as long as all the atoms in the ground 
state sample the convex part of the potential. Above a certain value of the interfacial 
bonding this condition is violated and the commensurate-incommensurate transition 
changes into a first-order transition. The energy of M D  interaction is considerably 
smaller in expanded than in compressed chains. It is suppressed additionally by the 
distortion of the chemical bonds between the M D .  The energy of a single MD depends 
strongly on the absolute value of the misfit; it grows in compressed and decreases in 
expanded epilayers. At zero value of the misfit the energy of a positive M D  (empty 
potential trough) is smaller than the energy of a negative M D  (two atoms in a trough). 

1. Introduction 

In general, the natural misfit in epitaxial interfaces is accommodated partly by ho- 
mogeneous strain (HS) and partly by misfit dislocations (MD), or, in other words, by 
periodic strain with period equal to MD spacing (van der Merwe 1973, 1979). When 
the natural misfit is smaller than the limit of stability of the pseudomorphic state a t  
a given film thickness, it  is accommodated completely by HS, i.e. the a tom spacing of 
the overgrowth is exactly equal to the spacing of the substrate atoms. Contrariwise, 
a t  great enough values of the misfit the latter is completely accommodated by MD, 
i.e. the  mean parameter of the epilayer is equal to its natural value. This question 
is of particular importance in the design of novel devices based on strained-layer su- 
perlattices such as quantum well lasers, high electron mobility transistors, etc (Ploog 
e t  al  1987), where the sign of the misfit changes from one epilayer to another and MD 
should be avoided at any cost in order not to deteriorate the device performance. In 
this case the misfit is accommodated by HS only. 

The  one-dimensional model of Frenkel and Kontorova (1939) which has been fur- 
ther developed by Frank and van der hlerwe (1949a, b) to account for the effect of the 
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lattice misfit, provides the ground for the analysis of the misfit accommodation as well 
as of various related problems. A common feature of all these is the competing period- 
icities, namely commensurate-incommensurate (CI) phase transitions in physisorbed 
layers (Venables and Schabes-Retchkiman 1978, Villain 1980) and in layered com- 
pounds (McMillan 1976), alignment of cholesteric liquid crystals in a magnetic field 
(de Gennes 1968), etc (for a review see Bak (1982)). 

In the conventional model of Frank and van der Merwe (1949a, b) which deals 
with a linear chain of atoms connected with purely elastic (Hookean) springs, the CI 
transition is continuous (see also Villain 1980, McTague et a1 1980, Aubry 1983, Aubry 
and Le Daeron 1983). Changing the shape of the interatomic potential from convex 
to non-convex could result in a change of the nature of CI transition from continuous 
to  first-order transition (Marchand e t  a1 1988, Yokoi e t  a1 1988, Chou 1988, Hood 
and Caille 1989). In a previous paper (Markov and Trayanov 1988) the harmonic 
potential adopted in the conventional ID  model of Frank and van der Merwe (1949a, b) 
has been replaced by a more realistic pair-wise interatomic potential V ( P ) .  A feature 
additional to  its anharmonicity is the inflection point P ,  at which the interatomic 
force reaches a maximum (the theoretical tensile strength of the material) and beyond 
which the potential becomes non-convex. The former leads to rupture of the most 
expanded chemical bonds in the cores of the compressed epilayers MD. The latter 
results in distortion or polymerisation of the bonds in expanded epilayers; long, weak 
and short, strong bonds alternate (Haas 1978, 1979). The energy difference between 
the distorted and undistorted structures is the driving force of such a distortion. As a 
result of the bond distortion the limits up to which the pseudomorphic state is stable 
or metastable, respectively, disappear beyond some critical values of the substrate- 
deposit bond strengths in expanded epilayers, but still exist in compressed ones. The 
expanded epilayers tend to be in commensurate states rather than in compressed ones. 
The width of the MD, or the number of atoms in marked disregistry with the substrate, 
becomes a function of the misfit; it grows with the misfit in compressed layers and 
decreases with the absolute value of the latter i n  expanded ones. 

When the epitaxial interface is a sequence of M D ,  positive and negative strains 
alternate with a period equal to the MD spacing. Chain distortion, however, also 
leads to a periodic variation of the strain, the period being equal to the degree of 
polymerisation. In this case the sign of the strain does not change. Hence, the strain 
periodicities due to  both the MD and t81ie chain distortion interfere with each other 
to produce a new, more complicated pattern. Thus the chain distortion additmionally 
modifies the MD interaction. 

The objective of the present paper is to study the effect of the anharmonicity and 
the negative curvature of the real pair-wise potentials on the accommodation of the 
natural misfit in epitaxial interfaces and the type of the CI transition in epilayers on 
the basis of the ID  model of Frank and van der Merwe (1949a, b). 

2. Model 

The model has been described and analysed in details by Markov and Trayanov (1988). 
We now briefly outlined it. 

We replace the harmonic interaction between the atoms in the model of Frank and 
van der Merwe by a pair-wise potential of the form (henceforth to be referred to  as 
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real potential) (Markov and Trayanov 1988) 

which has an inflection point a t  

At distances larger than ri the curvature of the potential, d2V(r) /dr2,  becomes neg- 
ative. 

In order to  distinguish the effect of the negative curvature of the potential (1) 
from the effect of its anharmonicity we employ also the anharmonic potential of Toda 
(1967) (Markov and Milchev 1984a, b) 

which goes linearly to  infinity for large r ,  the curvat(ure being always non-nega,tive. 
The values of the parameters p , v , ~  a.nd p are chosen in such a way ( p  = 4 , v  = 
3,  Vo = 1, CY = 2 and p = 6) that the repulsive branches of both potentials practically 
coincide; the two curves diverge for > 1.2r0 (figure 1). Moreover, both potentials 
have the same harmonic approxima.tion. 

Figure 1. The pair-wise potential of equation (1) with ~1 = 4 ,  v = 3 and Vo = 1, 
and the Toda potential in equation (3) with cy = 2 and p = 6. Broken curve gives 
the harmonic approximation comnion for both potentials. The dashed vertical line 
through the inflection point T ;  separates the regions of distortion and undistortion. 

The potential (1) can be considered as a generalisation of the Morse and Toda 
potentials. Thus, for p = 2v it turns into the Morse potential. Expanding the second 
term in a Taylor series up to  the linear term, one obtains the Toda potential with cr = 
pv/(,u - v) and P = /I. Note that the 6-12 Lennard-Jones potential, which is widely 
used for describing the properties of the rare gas solids, is practically indistinguishable 
from the potential (1) with p = 18 and v = 4,  the harmonic approximation being the 
same for both potentials. 
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The chain is subject to  an external periodic potential due to  the rigid subst,rate 

1 2 
V ( z )  = sw (1 - cosan-) a (4) 

where W and a are the overall amplitude and the wavelength. 
The potential energy of a chain consisting of N atoms connected with ‘real’ springs 

in the periodic potential field of a rigid substrate reads (Markov and Trayanov 1988) 

where En is the relative displacement of the nth atom from the bottom of the nth 
potential trough of the substrate, and 

Chain distortion is favoured energet8ically a t  weaker interfacia.1 bonding. The max- 
imum value of the relative interfacial bond strength W/Vo under which the distortion 
is tolerated, reads (Markov and Trayanov 1988) 

The distortion occurs a t  infinitesimal interfacial bonding when the misfit exceeds 
the critical value 

“0 - “i - W / v )  pi=-- 
a a b  - v) 

The misfit a t  which the maximum value W,,/Vo is reached, is the following 

Expressions similar to ( 5 )  and (7) can be easily obtained also for t,he Toda pot(entia1 
(3) (Markov and Milchev 1984a, b). Since we will compare our results with these of 
the harmonic model of Frank and van der Merwe (1949a), we will outline it briefly in 
the next section. 
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3. The harmonic model of hank and van der Merwe 

The overgrowth is modelled as a chain of atoms connected with elastic springs of 
natural length b and force constant y = pvV, as a substitute for the real interatomic 
forces. 

The energy of the system reads 

In the continuum limit minimising (12) with respect to tn yields the well known 
static sine-Gordon equation 

where 

is the width of the single non-interacting misfit dislocations. 
The  solution of (13) for dislocations far a.pa.rt is (Frank and van der Rlerwe 1949a) 

Substitution of (15) in the continuum approximation of (12) and the subsequent 
integration gives the energy of the chain with distant enough and non-interacting 
dislocations 

where 

4 
E, = -1,w 

iT  

is the energy of a single MD,  p d  is the mean density of the MD ( 1 / p d  is the mean MD 
spacing), &(O) = &ya2P2 is the energy of the commensurate state and P, = 2 / 7 4  is 
the limit of stability of the latter. 

In the case of interacting MD the energy of interaction of a pair is given by the 
asymptotic expression (Villain 1980, Theodoroil and Rice 1978) 

which is valid for MD far apart. Here 1 is the width of the MD and x is a constant of 
the order of one (Bak and Emery 1976, Theodorou and Rice 1978). 

In this case the mean MD density in  the ground state is given by (Frank and van 
der Merwe 1949a) 

Pd = 7F/2k101<(I*") (19) 
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where K(k) is the complete elliptic integral, il. is its modulus and I c f ,  = I. 
The energy of the incommensurate state then becomes 

and can be written as a sum of three energies 

E = Ed + fint + Ehs (21) 

Ed = ElPd (22) 

tint = XEIPde-n/Pd' (23) 

Ehs = E ( 0 )  - EIPdP/Ps = i y n 2  (P2 - 2PPd) % i r a 2 P ,  (24) 

where 

is the energy of the MD, 

is the energy of MD interaction, 

is the energy of the HS, and P, % P - P d .  

In general, equation (21) holds for any particular interatomic potential. However, 
the explicit expressions for the energies of single MD, MD interaction and HS will 
depend on the particular choice of the interatomic potential, 

4. Results 

Here we present the results of the numerical solution of the system of equations (7) for 
a chain with finite size (N = G O )  and free ends. The simulations were also repeated 
for a much longer chain (N = G O O )  and the results proved that the free end effects can 
be neglected. 

4.1. Solutions 
Except for the trivial solution <, = 0 for IPI < lP,l (complete accommodation by HS) 
and the distorted solutions <n+l  = <n-l = -<, (dimers), <,+1 = -(n-l and <, = 0 
(trimers), etc for IPI > lP,l (Markov and 'llayanov 1988), the system of equations (7) 
has solutions satisfying the condition tN-  - to = kND , where N D  is an integer equal 
to  the number of MD (single static solitons in the chain) (figure 2) .  The positive sign 
holds for positive misfits when the MD represent empty potential troughs (positive MD 
or light walls in the theory of the CI phase transitions (Villain l980)), whereas the 
negative sign corresponds to negative misfits when the MD represent two atoms in one 
trough (negative MD or heavy walls) (see figure 5 i n  Markov and Trayanov 1988). In 
distorted chains the bonds between the solitons polymerise (figure 2, curve a). At a 
given misfit the solitons in both real and Toda chains coincide (figure 2, curve b),  i.e. 
they have equal widths. 

At large absolute values of the negative misfit and strong interfacial bonding, 
coupled negative-positive MD (soliton-antisoliton) systems consisting of odd number 
of single solitons are often observed. Figure 3 presents systems consisting of soliton- 
antkoliton-soliton (SAS) (curve a )  and of three solitons and two antisolitons (SASAS) 
(curve b). A single soliton is also shown (curve c). These solutions resemble the 
so-called 'breathers' in the classical sine-Gordon chain (Scott et  a1 1973). However, 
contrary to  the 'breathers', these multi-soliton solutions are static. As will be shown 
below, their energy is much greater than that of single solitons. A detailed study of 
the multi-solitons will be presented elsewhere. 



Accomm.odaiion of niisfil in epitaxial interfaces  6971 

m o  c 

E e. 
-I p, -0.5 

E 

- 
0 
t ATOM NUMBER 

a - IP 

Figure 2. Singlestaticsolitonsin (curve (a))distortedrealchainat P = Pm(-19%), 
(curve b) Toda chain at the same value of the misfit, and (curve c) undistorted real 
chain at P = -9%. In all three cases [PI < 191. 

W 

II 
0 

Figure 3. Multi-soliton solutions: curve a,  S A S  (soliton-antisoliton-soliton); 
curve b, S A S A S  (soliton-antisoliton-soliton-antisoliton-soliton); and curve c ,  single 
soliton (for comparison). 

4.2 .  Commensurate-incommensuraie transition 

Recently Aubry and collaborators (Aubry 1983, Aubry and Le Daeron 1983) derived a 
number of important theorems about the behaviour of tlie Frenkel-Kontorova model in 
the case of a convex interaction potential. In particular, the CI transition is continuous, 
although it typically exhibits a devil’s staircase structure. 

The  realistic potentials are, however, non-convex. Several authors (Marchand el a1 
1988, Marchand and Caille 1988, Yokoi et a1 1988, Chou 1988, Hood and Caille 1989) 
proved that  as long as the nearest neighbour separations in the ground state sample 
the convex part of the potential, then Aubry’s theorems still apply and consequently, 
the CI transition is continuous. In terms of the present paper this condition can be 
expressed as 

L+l - <fa - p -5. ( 2 5 )  

In addition, these authors a.rgued that as soon as (25) is violated, i.e. as soon as some 
interatomic separations sample the non-convex part of tlie potential, the nature of tlie 
transition changes. 

In order to  study the nature of tlie CI transition in Frenkel-Kontorova model with 
interatomic potential (1) we plotted the mean MD density P,, as a function of the 
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natural misfit P (figure 4). To compare the curves better both positive and negative 
values of P are shown in the same quadrant ( P  > 0).  The  smooth curve illustrates the 
continuum limit of Frank and van der Merwe (1949b) (equation (19)). The  step-wise 
behaviour is due to the finite size of the chain ( N  = 60). The  splitting of the curves 
around the  harmonic approximation is due to the anharmonicity of the real potsential 
(Markov and Milchev 1984b). The  positive misfit curve is considerably closer to the 
harmonic limit than  the respective curve for the Toda chain (Markov and hiilchev 
1984b). This  is due to the limited interval of existence of the dislocated state as 
a result of the rupture of the most expanded bonds in the cores of the hfD in the 
compressed chains (Markov and Trayanov 1988). 

MISFIT 

Figure 4. Plot of the mean dislocation density in a real chain against the natural 
misfit for both positive (left) and negative (right) misfits. The harmonic continuous 
approximation of Frank and van der hlerwe (1949b) is presented by the smooth curve 
for comparison. The two curves are plotted in the same quadrant for easy comparison 
( N = 6 0 , W / V o = l , c ~ = 4 , ~ = 3 ) .  

For any value of the interfacial bonding the CI transition in compressed chains 
is continuous. However, this is not the case of expanded chains. At small values 
of the ratio W/Vo the condition ( 2 5 )  is obeyed. The  CI transition occurs at the 
stability limit P, where the ground state changes from dislocation free to  a state with 
a single dislocation. The  MD density Pd increases rapidly but continuously with the 
natural misfit P. Hence, the commensurate-incommensurate transition is continuous. 
Increasing the  interfacial bonding, the MD density rises even steeper (see figure 5) 
but the transition remains continuous. Above a critical value of W/Vo 0.6 which 
corresponds to P, = P,, the nature of the transition changes. The  condition (25) is 
violated for all /PI > lP,l, i.e. some interatomic separations sample the non-convex 
part of the potential. The  MD density changes from zero to a certain value Pdc by a 
jump. At  the stability limit P, the ground state is no longer dislocation free but a 
state with more then one dislocation. The energy of the states of Pd in the interval 
(0, P d c )  is higher then tha t  of the ground state,  however, this difference is very small. 
This results suggests tha t  the CI transition becomes a first-order transition. However, 
we believe tha t  at the critical point where P, = P,, the ground state degenerates i n  



Accommoda t ion  of m,isfil in, epilaxial interfaces  6973 

MISFIT 

Figure 5.  Mean dislocation density in a real chain as a function of the negative 
natural misfit for different values of tlie bonding across the interface, W/Vo, as shown 
on each curve ( N  = G O ,  p = 4, U = 3).  

agreement with tlie recent findings (Yokoi et a1 1988, Chou 1988). 
Figure 6 demonstrates the dependence of P,, on P for negative values of the latter 

in the case of the anharmonic Toda chain. The different curves correspond to  different 
values of W/V,. Clearly, this potential is convex wit8h P, = CO and Aubry’s theorems 
apply. The  CI transition is continuous, although the P d ( P )  dependence is very steep. 

In the harmonic approximation it is the energy of the MD interaction that drives 
the CI transition. To understand bet,t,er t,he results obtained in t,he present section, 
we explore the dependence of the energy on p d  and P i n  the case of negative misfit 
using both the real and the Toda potentials. The positive misfit will not be studied 
since the CI transition is always continuous. 

j 20 

0 
017 -011 -O!O -021 -00, 

MISFIT  

Figure 6. Mean dislocation density in an anharmonic Toda chain as a function of 
the negative natural nusfit for difTeivnt values of the bonding across the interface 
(N = 60,cu = 2,/3 = 6). 



6974 I Markov and A Trayanov 

4.9.  Energy 

Figure 7 is a plot of the potential energy per atom of a real chain with respect to  the 
commensurate state, E - f ( O ) ,  as a function of Pd for both types of CI transition. Figure 
7(a) illustrates the energy behaviour in case of continuous CI transition (W/Vo = 0.25) 
while figure 7(b) refers to the first-order CI transition (W/Vo = 0.62). As in the 
harmonic case (equation (20)) one can see that  the energy of the commensurate state 
is an additive term to the energy of the incommensurate state. For W/Vo = 0.25 
no linear dependence is observed and hence the interaction between the dislocations, 
Eint, contributes significantly to  the total energy. As a result the CI transition is 
continuous. Moreover, i t  occurs a t  very small value of the natural misfit where the 
harmonic potential is a good approximation to the real one (Markov and Trayanov 
1988). The same E(P,) dependence is observed for positive misfits irrespective of the 
value of the relative interfacial bonding W/V,. 
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Figure 7. Plot of the potential energy per atom relative to the commensurate 
state E ( 0 )  plotted against the number of the M D  in the chain for different values of 
the negative misfit (in per cent). (a) W / V ,  = 0.25 (continuous CI transition); (b) 
W/Vo = 0.62 (first-order CI transition). 

However, this is not the case for stronger int<erfacial bonding, W/Vo = 0.62, where 
the CI transition is first-order but still there is no distortion of the bonds. The energy 
is a linear function of Pd within the entire range of stability (up to  the maximum 
MD density). Well expressed linear dependence of the total energy on the dislocation 
density is also observed in Toda chains a t  large values of W/Vo. 

When, additionally, increasing the interfacial bonding, W/Vo, the CI transition 
takes place in the region of bond distortion, i.e. the bonds between the MD are 
distorted (figure 2).  However, the energy behaviour remains the same as in figure 
7(b). The interaction between the dislocations is rather small and this fact agrees 
with the conclusion of Marchand el  a1 (1988) that the non-convex potential leads to 
a first-order CI transition with non-int,eracting solitons of zero energy. Therefore the 
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plot of the energy against P d  is linear unless the misfit spacing is not comparable with 
the period of the distortion. A deviation from the linearity is found to occur after the 
complete disappearance of the distortion. 

In the case when ground states involve non-convex parts of the interaction poten- 
tial, negative interaction energies between defects were reported (Yokoi et a1 1988). 
The authors related this to a first-order transition. In our numerical simulations we 
did not find any negative interaction energies between the solitons. However, in the 
region of the first-order CI transition, there are anomalies in the interaction energy 
behaviour when IPI > lPil (see the lower two curves in figure 7(b)). 
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Figure 8. The behaviour of the M D  pair interaction energy: (a) dependence of 
the energy on the number of the M D  for positive and negabive values of the nattird 
misfit; (b) logarithnuc plot of the energy of M D  interaction against the M D  spacing 
(reciprocal to M D  derisit,y). Curves 2 in both figures represent the harmonic limit 
( N  = 60,P = f i % , W / V o  = 0 .5 ) .  

The MD interaction energy is considerably larger for a positive misfit, than for a 
negative one (see figure 8(a)). This is due to the anharmonicity of the int>eratomic 
potential. In the harmonic case, according to equation (18), the MD interaction energy 
Eint depends exponentially on l/Pd. In figure 8(b) t8he real chain data are plotted on a 
semi-logarithmic scale. For a positive misfit both in the real case and in the harmonic 
limit the plot is almost linear. In the case of a negative misfit the interaction energy 
depends exponentially on the MD density even at high values of the latter. However, 
equation (18) can be used to evaluate the MD width only for the harmonic limit. 
For real chains the slopes of the straight, lines predict either larger or smaller widths 
depending on whether the misfit is positive or nega.tive. 

The slopes d8/dPd of the linear parts of t,he curves in figure 8(a) are presented in 
figure 9 as a function of the natural misfit. The straight line 1 shows the behaviour 
of the harmonic approximation with y = pvVo = 12. It crosses the abscissa at  the 
stability limit P,“ and the ordinate at the value of the energy E, of a single MD (equation 
(17)). Curve 2 represents the negative misfit dependence of dE/dPd of a real chain 
with W = 1,p = 4 and v = 3.  Except for the strong non-linearity, no singularity 
was found at  the inflection misfit P, above which bonds distortion takes place. The 
analogous dependence for the Toda chain with W = l , a  = 2 and p = 6 shows the 
same behaviour and therefore is not presented in the figure. Curves 3,  4 and 5 give 
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IO h 

5 \  I 
Figure 9. Misfit dependence of the slopes d&/dPd of the linear parts of the & ( P d )  
curves. The straight line 1 illustrates the harmonic limit of Frank and van der 
Merwe. Curve 2 shows the negative nusfit behaviour with W/Vo = 1; curves 3,  4 
and 5 represent the positive inisfit cases with M’/Vo = 0.25,0.5 and 1, respectively 
(N = 60). 

the positive misfit dependences of real chains wit,h W = 0.25,0.5 and 1.0, respectively. 
As can be seen, their curvature has the opposite sign and they do not intersect with 
the abscissa except for very small value of W/Vo. The latter is due to the rupture of 
the most expanded bonds in the  cores of the h4D (Markov and Trayanov 1988). 

Equation (16) can be generalised to also include the real chains. Since no exact 
solution is known so far, we make an attempt to fit the da ta  from the numerical 
solutions with the  semi-empirical expression 

( 2 6 )  

It turns out t ha t  this expression describes all the da ta  surprisingly well. I t  holds for 
both negative and positive misfits and also in the region of bond distortion. Moreover, 
the limiting case of the harmonic chain for which P, = 03, is also formally included. 
From equation (26) it follows that the value of the stability limit P,, participating 
in the  above equation in the case of a positive misfit, is the one which should have 
occurred if the MD core bonds did not break (figure 9,  the broken curves). At the 
critical value of the misfit where tlie rupture of the core bonds occurs, there is an 
energy discontinuity (see figure 7 in Rlarkov and Trayanov (1988)) and E # f ( 0 ) .  

Thus, by analogy with (lG), we can writme tlie following expression for the energy 
of a single MD 

E, = f,Oe-P/P1 (27) 

where 8; is the energy of a single MD a t  P = 0.  Since P, < 0,  it follows tha t  E,  
is a decreasing function of the negative misfits and an increasing one of the positive 
misfits. 

The  zero energy of a single M D ,  I:, is shown in figure 10 as a function of the 
W1/’ (Vo = constant). The  straight line 1 represents the harmonic limit; curve 3 
corresponds to  the  energy of a negative MD (two atoms in a trough or heavy wall 
(Villain 1980)), whereas curve 2 gives the energy of a positive MD (an empt,y trough 
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Figure 10. Dependence of the zero energy (P = 0) of the static solitons on W1l2 .  
The straight line 1 presents the harmonic limit of Frank and van der Merwe. Curve 2 
gives the energy of a positive h tD (an empty trough or light wall) and curve 3 shows 
the energy of a negative M D  (two atoms in a trough or a heavy wall). 

or a light wall). The negative RID energy is calculated directly as the energy of the 
incommensurate state of a long chain containing only one MD at  P = 0 ( E ( ( ) )  = o ) ,  
while the positive MD energy is computed using equation (26). The difference i n  the 
energies clearly reflects the anharmonicity of the real potential. In expanded chains 
(negative misfit) the atoms of the MD interact according to  the steeper repulsive branch 
of the potential and the zero energy E: is larger than in compressed chains where the 
weaker attractive branch governs the interaction. 

It is interesting to  compare the zero energy of the single soliton &f with that of 
the multi-soliton solutions (figure 3) .  While 8; for a single MD at  w/Vo = 1.6 is equal 
to 16.2, the energy of a SAS is equal to 297 and that of a SASAS equals 625. Note that 
the energy of chains containing niulti-solitons is again described by equation (26). 

We conclude that the energy of interaction of positive MD in real chains is much 
greater than that of negative ones due to both the exponential tails and the exponential 
dependence of the energies of the single MD on the misfit. This is valid assuming t,liat 
an expression for E,nt of the kind of (18) holds. 

Interesting enough, the energy relative to  the commensurate state (figure 9,  
curve 2) exhibits no singularity a t  the inflection misfit. We discuss the type of the 
distortion transition in the next section. 

4.4. Dist ort a on t ra nsz t z o n 

At low values of the misfit and strong interfacial bonding the most favourable state is 
the undist,orted one (tn = 0). Increasing the misfit above a certain critical value, P, 
(see equation 18, Markov and Trnyaiiov I S S t s ) ,  given implicitly by 

a transition to a distorted state occurs. We refer to this phenomenon as to  a distortion 
transition. The type of the distortion (dimers, trimers, etc) depends on the interfacial 
bonding. There is a close analogy i n  t,he physical behaviour of this system with the 
so-called Coulomb gas model in the statistical physics. The latter has been studied 
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in details in the last decade in relation to the 2D melting, surface roughening, etc 
(see, for example, Weeks 1980). If we consider the misfit in our model to be the 
inverted temperature and the interfacial bonding to  be the external field, the distortion 
transition resembles the phase transition from a low-temperature, diatomic phase to  a 
high-temperature, metallic phase in the Coulomb gas (Kosterlitz and Thouless 1973). 

Despite of this close analogy, however, the distortion transition is not a ‘true’ 
thermodynamic phase transition. In the present study we are interested in the sta- 
bility of the ground state of the discrete real chain (T = 0). Therefore, there are no 
thermal fluctuations to  induce a phase transition. Mathematically this is equivalent 
to  constructing a partition function in the mean-field approximation, i.e. instead of 
summing over all the possible configurations of the atoms in the chain ((,), only the 
most probable one (the ground state) is considered. 

Nevertheless it is worth analysing the distortion transition in more detail. We 
consider only the region where the distorted ground state consists of dimers (i.e. 

= -(, = (n+l ) .  In this case it is appropriate to introduce an order parameter, 
U = 21(,1, characterising the bond distortions. This parameter is analogous to  the 
magnetisation in magnetic systems. Since the misfit and the interfacial bonding are 
not coupled to  the order parameter, they both act as temperature. In the undistorted 
state, U remains essentially zero while as soon as the ground state becomes distorted 
it turns positive. Our simulations show tha.t close to P, the order parameter behaves 
like 

U - ( P  - P y 2  . (29) 
The second derivative of the energy with respect to P is discontinuous a t  P = P,. 
Since T = 0, i t  replaces the free energy and the distortion turns to  be a second-order 
transition. The same order of the transition was found recently for dimerisation by 
Hood and Caille (1989). 

The order parameter has the same critical behaviour with respect to  the interfacial 
bonding 

U - (W, - W)1’? (30) 
and the second derivative of the energy with respect to W is again discontinuous, i.e. 
the dimerisation is a second-order transition with respect to both the misfit and the 
interfacial bonding. 

The  value of the critical exponent, l / 2 ,  in (29) and (30) coincides with the mean- 
field value of the critical exponent @ in Ising systems (not to be confused with the 
parameter p in the Toda potential (3)). Both this result and that the distortion is 
a second-order transition could be ant,icipated. Indeed, if we expand the energy in 
powers of the order parameter, the expression would be similar to  t,hat in the Landau 
theory of second-order transitions (Landau and Lifshitz 1978). Since this theory is 
based on the mean-field approximat,ion, it yields a critical exponent of 1/2. 

Finally, it would be interesting to check whether, in analogy to  the system in- 
vestigated, a series of phase transitions would occur (dimers-to-trimers, trimers-to- 
tetramers, etc) in the Coulomb gas model when varying the external field. A future 
project will focus on studying when the analogy breaks down, a t  all. 

5 .  Discussion 

The comparison between the real case and the harmonic limit shows that ,  firstly, the 
energy of the commensurate state is an additive quantity to  the ttotal energy (see 
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equation (20)). In the harmonic approximation this is a result of the integration of 
the energy in the continuous limit after expansion of the quadratic term in equation 
(12); it is obtained without substituting the solution of the sine-Gordon equation in the 
expression for the energy. In our case the additivity of the energy of the commensurate 
state is not a straightforward conclusion. 

Secondly, the slopes of the linear parts of the E(P,) dependences are not linear 
functions of the natural misfit as in the harmonic limit. An exponential term should be 
added in equation (16) to  fit the results of the simulations properly. I t  is not surprising 
that this term describes the behaviour of the energy correctly in the cases of both the 
negative and positive misfits since in a dislocated chain compression and expansion 
periodically alternate. The exponential form of this term reflects most probably the 
exponential shape of the interatomic potential (1). 

As a result of the non-linear behaviour of d€/dP,, the energy of a single dislocation, 
which in the harmonic model is a function of the energetic parameters only, depends 
strongly (in fact exponentially) on the natural misfit; it steeply decreases with the 
absolute value of the negative misfit and increases with the value of the positive misfit. 
In addition, the zero energy of the single MD for negative misfit is greater than that  
for a positive one due to  the anharmoiiicity of the real potential. Then €$ can be 
smaller than E r  at small absolute values of the natural misfit, particularly for strong 
interaction across the interface. I t  is considerably greater a t  large misfits. 

One of the most interesting aspects of the present study is the type of transition 
from commensurate (pseudomorphous) to  incommensurate (dislocat,ed) state. In prin- 
ciple, the value of the natural misfit is fixed for a given combination of substrate and 
overlayer crystals. I t  could be varied, however, when alloys are deposited by varying 
the alloy composition. We can expect that when the epilayer is compressed and is 
slightly thicker than the critical value for pseudomorphic growth, the natural misfit 
can be accommodated simultaneously by HS and MD as in the harmonic model. This 
is not the case in expanded epilayers where the natural misfit is expected to  be accom- 
modated either by HS or by MD. It follows that after reaching the equilibrium critical 
thickness for pseudomorphic growth, the natural misfit will be entirely accommodated 
by MD. This is true beyond some critical substrate-deposit bonds strength. This crit- 
ical strength is relatively small (IV/V, x 0.6) and in particular, it is smaller than 
the interfacial bonding at  which the adlayers are stable (Markov and Trayanov 1988, 
Markov and Stoyanov 1987). Therefore, we could expect a continuous CI transition 
at negative misfits only in the limiting case of well expressed island growth. 

I t  is surprising that the role of the bonds distortion in the CI transition is restricted 
only to  suppression of the interaction between neighbouring MD. As seen in figure 2 
(curve a) the dislocation does not perturb significantly the distortion of the bonds 
in its vicinity. However, this is not the case when the chain is not distorted (curve 
c). When the MD density is large enough so that the MD-induced periodicity of the 
strain becomes comparable with the periodicity due to  the bonds distortion, the latter 
disappears and the MD begin to  interact. The Dotential energy per atom of a distorted 
chain relative to  the energy of the commensurate state follows exactly the behaviour 
shown in figure 7(b) and deviates from the straight line only after the disappearance 
of the distortion. Since the period of strain due to  the bonds distortion is equal 
usually t o  two to  four atom distances, the MD density a t  which the interaction begins 
is practically equal to  the maximum possible value. Moreover, first-order CI transition 
is observed at small interactions W/V, across the interface, when bonds distortion 
does not take place (W/V, w 0.6). The small energy of MD interaction in this case is 
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due to  the misfit dependence of the energy of a single MD and to  the small dislocation 
width (Markov and Trayanov 1988). Obviously, a t  IPI > lPil all the factors contribute 
simultaneously. 
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